

André R. Brodtkorb

TODAYS TOPIC

- Interpolating data with polynomial interpolation
- Approximating data with regression models
- Training and test datasets

MOTIVATION

What is a (my) home worth today?

All other similar estimates

- electricity price
- How effective will a drug be for a patient?

Fortell oss litt om boligen din

Eksempel: (Gatenavn 1A, 0000 Sted		
Størrelse			
Eksempel: 4	40		
Antall rom			
-	2-roms		
_	1. etas	je	
Fasiliteter			
Fasiliteter Gar	asje/P-plass	الطع Ildsted	
Fasiliteter Gar Balk	ی asje/P-plass ong/Terrasse	Ildsted Utsikt	

Beregn verdiestimat

(figure from https://dnbeiendom.no/altombolig/samsolgt/se-hva-boligen-din-er-verdt--her-og-na)

POLYNOMIAL INTERPOLATION

- For n data points, we can find a degree n-1 polynomial that interpolates all data points
 - Two points: line (f(x) = ax + b)
 - Three points: parabola $(f(x) = ax^2 + bx + c)$
 - Four points: cubic function (f(x) = ax^3 + bx^2 + cx + d)

PROBLEMS

- Polynomial interpolation is unstable for large n
- Sensitive to noise

IS IT A GOOD REPRESENTATION?

• Is a degree 10 polynomial a good fit for our data?

- Instead of interpolating all values, we can find a function that approximates our data (also called regression analysis)
- Our data "looks" linear, lets try linear regression

JUPYTER NOTEBOOK

Linear regression in Python

CHOOSING A GOOD MODEL FOR OUR DATA

- Need to inspect data
- Need an educated guess on what type of model should fit our data "well"
- "Easy" for one-dimensional data, very difficult for 4D or higher.

WHAT DOES OUR DATA LOOK LIKE?

• X^2, log(x), sin(x), ...?

Sometimes it is difficult to determine or unknown!

Polynomial regression degree 2

- Mean average error (MAE)
 - Average of absolute difference between prediction and observation
- Mean squared error (MSE)
 - Average of square of difference between prediction and observation
- Root mean squared error (RMSE)
 - Square root of mean squared error
- (more as well, see scikit.learn model evaluation for example)

JUPYTER NOTEBOOK

Score of our linear regression example

- Underfitting happens when we have a too simple model
- Example: Using a linear model to predict nonlinear behaviour
- Symptoms: poor predictive skill, even on the data we try to fit

OVERFITTING

- Overfitting is when we have too much freedom in our model
- Example: Using a polynomial of degree n-1 for n data points (interpolation)
- Symptoms: Model is extremely good at predicting known data, but terrible at predicting new data

TESTING THE MODEL

- So far, we have tested the model on data that it's already "seen"
- This is not a very good way to quantify model performance
- In machine learning, the dataset is usually divided into train and test subsets

JUPYTER NOTEBOOK

Testing model performance on test dataset

VALIDATION

- Validation data is used to check model performance and set hyperparameters
- Model may "see" the validation data through performance feedback
- Testing data is still not part of training

- Divide data into k subsets
- Train k models, using a different subset as test data for each model
- Use the rest of the data for training
- Evaluate on separate test dataset

Image from https://scikit-learn.org/stable/modules/cross validation.html

SUMMARY

- Polynomial interpolation does not scale
 - Sensitive to noise and high order
- Regression models approximate data
 - Check for underfitting and overfitting and find the sweetspot in between
- Testing and training datasets
 - K-fold cross-validation
- Source code on github: <u>https://github.com/babrodtk/</u>
- Slides on webpage: <u>https://brodtkorb.org/</u>

BONUS: BOOTSTRAPPING

- Assume you have population you want to model
- Create a "sample" (subset) of size n
- Pick n data points (with replacement) from your population to create a "bootstrap sample"
- Fit a model to each bootstrap sample
- Average models for prediction

