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Computing π with CUDA



• There are many ways of estimating Pi. One way is to 

estimate the area of a circle. 

• Sample random points within one quadrant

• Find the ratio of points inside to outside the circle

• Area of quarter circle: Ac = πr2/4

Area of square: As = r2

• π = 4 Ac/As ≈ 4 #points inside / #points outside

• Increase accuracy by sampling more points

• Increase speed by using more nodes

• Algorithm:

1. Sample random points within a quadrant

2. Compute distance from point to origin

3. If distance less than r, point is inside circle

4. Estimate π as 4 #points inside / #points outside

Computing π with CUDA

pi=3.1345 pi=3.1305 pi=3.1597

pi=3.14157

Remember: The algorithms serves as an example: 
it's far more efficient to estimate π as 22/7, or 355/113☺
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float computePi(int n_points) { 

int n_inside = 0; 

for (int i=0; i<n_points; ++i) { 

//Generate coordinate

float x = generateRandomNumber(); 

float y = generateRandomNumber(); 

//Compute distance

float r = sqrt(x*x + y*y); 

//Check if within circle

if (r < 1.0f) { ++n_inside; } 

} 

//Estimate Pi

float pi = 4.0f * n_inside / static_cast<float>(n_points); 

return pi; 

}

Serial CPU code (C/C++)



float computePi(int n_points) { 
int n_inside = 0; 
#pragma omp parallel for reduction(+:n_inside) 
for (int i=0; i<n_points; ++i) { 
//Generate coordinate
float x = generateRandomNumber(); 
float y = generateRandomNumber(); 
//Compute distance
float r = sqrt(x*x + y*y); 
//Check if within circle
if (r <= 1.0f) { ++n_inside; } 
} 
//Estimate Pi
float pi = 4.0f * n_inside / static_cast<float>(n_points); 
return pi; 

}

Parallel CPU code (C/C++ with OpenMP)

Make sure that every 
expression involving 
n_inside modifies the 
global variable using 
the + operator

Run for loop in 
parallel using multiple 
threads



• Parallel: 3.8 seconds @ 100% CPU

• Serial: 30 seconds @ 10% CPU

Performance



GPU function__global__ void computePiKernel1(unsigned int* output) { 

//Generate coordinate

float x = generateRandomNumber();

float y = generateRandomNumber(); 

//Compute radius

float r = sqrt(x*x + y*y); 

//Check if within circle

if (r <= 1.0f) { 

output[blockIdx.x] = 1; 

} else { 

output[blockIdx.x] = 0; 

}

}

Parallel GPU version 1 (CUDA) 1/3

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information



float computePi(int n_points) {

dim3 grid = dim3(n_points, 1, 1);

dim3 block = dim3(1, 1, 1);

//Allocate data on graphics card for output
cudaMalloc((void**)&gpu_data, gpu_data_size);

//Execute function on GPU (“lauch the kernel”)

computePiKernel1<<<grid, block>>>(gpu_data);

//Copy results from GPU to CPU

cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size,
cudaMemcpyDeviceToHost);

//Estimate Pi

for (int i=0; i<cpu_data.size(); ++i) {

n_inside += cpu_data[i];

}

return pi = 4.0f * n_inside / n_points;

}

Parallel GPU version 1 (CUDA) 2/3



• Unable to run more than 65535 sample 

points

• Barely faster than single threaded CPU 

version for largest size!

• Kernel launch overhead appears to 

dominate runtime

• The fit between algorithm and architecture 

is poor:

• 1 thread per block: Utilizes at most 1/32 

of computational power.

Parallel GPU version 1 (CUDA) 3/3
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• CPU scalar: 1 thread, 1 operand on 1 data element

• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements

• GPU Warp: 32 threads, 32 operands on 32 data elements

• Exposed as individual threads

• Actually runs the same instruction

• Divergence implies serialization and masking

GPU Vector Execution Model

Scalar operation SSE/AVX operation Warp operation



Hardware automatically serializes and masks divergent code flow:

• Execution time is the sum of all branches taken

• Programmer is relieved of fiddling with element masks (which is necessary for SSE/AVX)

• Worst case 1/32 performance

• Important to minimize divergent code flow within warps!

• Move conditionals into data, use min, max, conditional moves.

Serialization and masking
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__global__ void computePiKernel2(unsigned int* output) { 
//Generate coordinate
float x = generateRandomNumber();
float y = generateRandomNumber(); 

//Compute radius
float r = sqrt(x*x + y*y); 

//Check if within circle
if (r <= 1.0f) { 

output[blockIdx.x*blockDim.x + threadIdx.x] = 1; 
} else { 

output[blockIdx.x*blockDim.x + threadIdx.x] = 0; 
}

}

float computePi(int n_points) {

dim3 grid = dim3(n_points/32, 1, 1);

dim3 block = dim3(32, 1, 1);

…

//Execute function on GPU (“lauch the kernel”)

computePiKernel1<<<grid, block>>>(gpu_data);

…

}

Parallel GPU version 2 (CUDA) 1/2



• Unable to run more than 32*65535 

sample points

• Works well with 32-wide SIMD

• Able to keep up with multi-threaded 

version at maximum size!

• We perform roughly 16 operations per 4 

bytes written (1 int): memory bound 

kernel!

Optimal is 60 operations!

Parallel GPU version 2 (CUDA) 2/2
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__global__ void computePiKernel3(unsigned int* output, unsigned int seed) {
__shared__ int inside[32]; 

//Generate coordinate
//Compute radius
…

//Check if within circle
if (r <= 1.0f) { 

inside[threadIdx.x] = 1; 
} else { 

inside[threadIdx.x] = 0; 
} 

… //Use shared memory reduction to find number of inside per block

Parallel GPU version 3 (CUDA) 1/4

Shared memory: a kind of “programmable cache”
We have 32 threads: One entry per thread



… //Continued from previous slide

//Use shared memory reduction to find number of inside per block
//Remember: 32 threads is one warp, which execute synchronously
if (threadIdx.x < 16) { 

p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1]; 

} 

if (threadIdx.x == 0) { 
output[blockIdx.x] = inside[threadIdx.x];

}
}

Parallel GPU version 3 (CUDA) 2/4



• Shared memory is a kind of 

programmable cache

• Fast to access (just slightly slower than 

registers)

• Programmers responsibility to move 

data into shared memory

• All threads in one block can see the 

same shared memory

• Often used for communication between 

threads

• Sum all elements in shared memory using 

shared memory reduction

Parallel GPU version 3 (CUDA) 3/4



• Memory bandwidth use reduced 

by factor 32!

• Good speed-up over 

multithreaded CPU!

• Maximum size is still limited to 

65535*32. 

• Two ways of increasing size:

• Increase number of threads

• Make each thread do more work

Parallel GPU version 3 (CUDA) 4/4
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__global__ void computePiKernel4(unsigned int* output) { 
int n_inside = 0; 

//Shared memory: All threads can access this
__shared__ int inside[32]; 
inside[threadIdx.x] = 0; 

for (unsigned int i=0; i<iters_per_thread; ++i) { 
//Generate coordinate
//Compute radius
//Check if within circle
if (r <= 1.0f) { ++inside[threadIdx.x]; } 

} 

//Communicate with other threads to find sum per block
//Write out to main GPU memory

} 

Parallel GPU version 4 (CUDA) 1/2



• Overheads appears to dominate 

runtime up-to 10.000.000 points:

• Memory allocation

• Kernel launch

• Memory copy

• Estimated GFLOPS: ~450

Thoretical peak: ~4000

• Things to investigate further:

• Profile-driven development*!

• Check number of threads, 

memory access patterns, 

instruction stalls, bank conflicts, ...

Parallel GPU version 4 (CUDA) 2/2
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*See e.g., Brodtkorb, Sætra, Hagen, 
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013



• Previous slide indicates speedup of 

• 100x versus OpenMP version

• 1000x versus single threaded version

• Theoretical performance gap is 10x: why so fast?

• Reasons why the comparison is fair:

• Same generation CPU (Core i7 3930K) and GPU (GTX 780)

• Code available on Github: you can test it yourself!

• Reasons why the comparison is unfair:

• Optimized GPU code, unoptimized CPU code.

• I do not show how much of CPU/GPU resources I actually use (profiling)

• I cheat with the random function (I use a simple linear congruential generator).

Comparing performance


