
CONSERVATION LAWS ON GPUS
EXERCISES

André R. Brodtkorb

Researcher, Department of Mathematics and Cybernetics, SINTEF Digital

Associate Professor, OsloMet – Oslo Metropolitan University

Exercise 1: Matrix addition

1. Make a directory that is your own, call it <your-username>

2. Make a copy of the Jupyter notebook "01 HelloPyCuda.ipynb"

3. Move the copy to <your-username>/MatrixAddition.ipynb

4. Change the code to add two matrices instead of vectors

• Hint: CUDA uses blockIdx.x*blockDim.x + threadIdx.x; to get the global x coordinate. How do

you think we get the y coordinate?

• Hint: You can calculate the linear address of a 2d element using j*cols+i

5. Repeat the exercise with PyOpenCL

• Hint: OpenCL uses get_global_id(0); to get the x coordinate.

Exercise 2: Matrix-vector product

1. Make a copy of the Jupyter notebook "01 HelloPyCuda.ipynb"

2. Move the copy to <your-username>/MatrixVector.ipynb

• Implement matrix-vector product to multiply an m x n matrix by a n x 1 vector

• Hint: Create one thread per output (4x1), and let each tread calculate its own result/sum

4 x 3
3
x
1

4
x
1

=x

Exercise 3: Computing Pi

1. Make a copy of the Jupyter notebook "ComputePi.ipynb"

2. Move the copy to <your-username>/ComputePi.ipynb

3. Start implementing the CUDA kernel for computing Pi.

• Hint: Parts where you need to change and implement things are hilighted

4. Create a new function

def computePi2GPU(n_points)

which implements version 2 of the code.

Hint: Do you also perhaps need to create a new kernel?

5. What is the performance difference?

Hint: How many points can you sample with the two versions?

Hint: You can get the current time using

import time

tic = time.time()

<timer her>

elapsed = time.time() – tic

6. Continue with version 3 etc.

