
CONSERVATION LAWS ON GPUS
EXERCISES

André R. Brodtkorb

Researcher, Department of Mathematics and Cybernetics, SINTEF Digital

Associate Professor, OsloMet – Oslo Metropolitan University



Exercise 1: Double precision

1. Make a directory that is your own, call it <your-username>

2. Make a copy of the Jupyter notebook "<your-username>/11 MatrixAddition.ipynb"

3. Move the copy to <your-username>/MatrixAdditionDouble.ipynb

4. Change the code to add two matrices of double precision

• Hint: double in numpy is astype(np.float64), but typically all numbers are double already

Hint: You need to change both the kernel and the code calling the kernel

Hint: Look at the DoublePrecision notebook for guidance

5. Measure the performance using

import time

tic = time.time()

<operation>

elapsed = time.time() - tic

6. Repeat the exercise with PyOpenCL



Exercise 2: Unit testing

1. Add unit testing to your notebooks so far

Hint: Look at "PyTest.ipynb" to see how testing is implemented there

Hint: you need to include the following:

import pytest

from ipytest import run_pytest, clean_tests

2. Make sure you test different kinds of cases

• Default case (what usually happens)

• Corner cases (what happens with special arguments)

3. When testing floating point operations, how low a relative and absolute tolerance to you

need for the test to pass?

Hint: Look at the documentation for approx(expected, rel=None, abs=None, nan_ok=False)

Hint: The GPU and CPU results will not be identical: Why?



Exercise 3: Logging

• Implement logging in your notebooks

Hint: Start with including the logging and replacing print statements with log statements

Hint: Look at "Logging.ipynb" to see how the logger can be initialized and works

• Implement logging to file also

• How does the output differ from file and console?

• Make the file output have more information than the console

• Log important information such as Python version, CUDA / OpenCL version in all of your 

notebooks

Hint: You can look at https://documen.tician.de/pyopencl/ for getting the OpenCL version

and https://documen.tician.de/pycuda/ for CUDA

https://documen.tician.de/pyopencl/
https://documen.tician.de/pycuda/


Exercise 4: Measuring performance

• Create a new file called Timer.py, and implement the following timer



Exercise 4: Measuring performance

• The timer can be used as follows:

with Timer("timer tag") as t:

callPythonFunction(arguments)

print("The function took " + str(t.secs) + " seconds")

• Use the timer to time the functions you have made so far on the GPU.

• What takes the longest time? Memory copy? Kernel execution? Upload or download? 

• How does your code scale? Does it take twice as long to run twice as large a problem?

• How large does the problem need to be before your timing results are reproducible?



Exercise 4: Measuring performance

• GPU time can be measured using events!

• Try using the following:

start = cuda.Event() 

end = cuda.Event()

start.record(0)

<kernel launch here>

end.record(0)

gpu_elapsed = end.time_since(start)*1.0e-3

• Is there a large differende between the GPU elapsed and the CPU elapsed time?



Exercise 5: Kahan summation on the GPU

• Start by making a copy of the "Kahan sum.ipynb" notebook and implement parallel Kahan

summation on the GPU

Hint: Assume the data is divisible by the number of threads

Hint: Let each thread handle an equal portion of the data and compute a partial sum on the 

GPU

Hint: Compute the total sum from the partial sums on the CPU

Example: 32 threads and 4096 data elements to sum. 

• Each thread will sum 4096/32 = 128 elements. 

• Then we have 32 partial sums. 

• Transfer these to the CPU, and perform the final Kahan summation on the CPU



Exercise 6: Make prepared calls

• Make your kernels initialize faster by using prepared calls

cuda_kernel = """

__global__ void vectorAddKernel(float* c, float* a, float* b) {

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

c[i] = a[i] + b[i];

}

"""

module = cuda_compiler.SourceModule(cuda_kernel)

kernel = module.get_function("vectorAddKernel")

kernel.prepare("PPP")

grid = (n, 1, 1)

block = (1, 1, 1)

kernel.prepared_call(grid, block, c_g.gpudata, a_g.gpudata, b_g.gpudata)

How does this affect the performance?



Exercise 7: Optimizing CUDA code

1. Try using a different block size

Try a power of 2, and a non-multiple of 2

Example (13,3) versus (16, 4)

What is the performance for the two versions?

2. Implement asynchronous memory transfers

Hint: Look at set_async and get_async, 
https://documen.tician.de/pycuda/array.html#pycuda.gpuarray.GPUArray.set_async

3. Implement asynchronous kernel launches

Hint: This requires a CUDA stream, see
https://documen.tician.de/pycuda/driver.html#pycuda.driver.Stream and

https://documen.tician.de/pycuda/driver.html#pycuda.driver.Function and 

https://documen.tician.de/pycuda/driver.html#pycuda.driver.Function.prepared_async_call

Hint: look at the argument stream in the __call__ documentation

Is the CPU time now different from the GPU time?

https://documen.tician.de/pycuda/array.html#pycuda.gpuarray.GPUArray.set_async
https://documen.tician.de/pycuda/driver.html#pycuda.driver.Stream
https://documen.tician.de/pycuda/driver.html#pycuda.driver.Function
https://documen.tician.de/pycuda/driver.html#pycuda.driver.Function.prepared_async_call


Exercise 8: Compilation flags

• Try experimenting with the following compiler flags:

--maxrregcount=10

--use_fast_math

--gpu-architecture=compute_50 --gpu-code=sm_50,sm_52

• How do these parameters affect the accuracy and performance?

• Full overview: https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html


Exercise 9: Mandelbrot set

• Experiment with the Mandelbrot notebook

• Change parameters and see how they affect the performance

• Domain size

• Block size

• Iterations

• Change the kernel so that it handles an arbitrary domain size and block size

Hint: Look at matrix vector product on how it handles threads which are "out of bounds"


