
CONSERVATION LAWS ON GPUS:
INTRODUCTION TO GPUS

André R. Brodtkorb

Researcher, Department of Mathematics and Cybernetics, SINTEF Digital

Associate Professor, OsloMet – Oslo Metropolitan University

Motivation for going parallel

• The key to increasing performance,

is to consider the full algorithm and

architecture interaction.

• A good knowledge of both the

algorithm and the computer

architecture is required.

Why care about computer hardware?

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer
(Atanasoff and Berry)

1971: Microprocessor
(Hoff, Faggin, Mazor)

1947: Transistor
(Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
(Kilby)

2000

1971- Exponential growth
(Moore, 1965)

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. Trans, 8 cores, 2.66 GHz

History lesson: development of the microprocessor 2/2

• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance)

• 1999-2014: Parallelism doubles every 30 months

End of frequency scaling

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1

10

100

1000

10000

Desktop processor performance (SP)

1999-2014:
Parallelism doubles
every ~30 months

1971-2004:
Frequency doubles
every ~34 months

2004-2014:
Frequency
constant

SSE (4x)

Hyper-Treading (2x)

Multi-core (2-6x)

AVX (2x)

• Heat density approaching that of nuclear

reactor core: Power wall

• Traditional cooling solutions (heat sink +

fan) insufficient

• Industry solution: multi-core and

parallelism!

What happened in 2004?

Graph taken from G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09

W
 /

 c
m

2

Critical dimension (um)

Why Parallelism?

100%

100%

100%

85%

90% 90%

100%

Frequency

Performance

Power

Single-core Dual-core

The power density of microprocessors
is proportional to the clock frequency cubed:1

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010

• Up-to 5760 floating point

operations in parallel!

• 5-10 times as power

efficient as CPUs!

Massive Parallelism: The Graphics Processing Unit

0

50

100

150

200

250

300

350

400

2000 2005 2010 2015

B
an

d
w

id
th

 (
G

B
/s

)

0

1000

2000

3000

4000

5000

6000

2000 2005 2010 2015

G
ig

af
lo

p
s

(S
P

)

Multi- and many-core processors

• A taxonomy of different parallelism is useful for discussing parallel architectures

• 1966 paper by M. J. Flynn: Some Computer Organizations and Their Effectiveness

• Each class has its own benefits and uses

A taxonomy of parallel architectures

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput., 1966

Single Data Multiple Data

Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

• Traditional serial mindset:

• Each instruction is executed after the other

• One instruction operates on a single element

• The typical way we write C / C++ computer

programs

• Example:

• c = a + b

Single instruction, single data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

• Traditional vector mindset:

• Each instruction is executed after the other

• Each instruction operates on multiple data

elements simultaneously

• The way vectorized MATLAB programs often are

written

• Example:

• c[i] = a[i] + b[i] i=0…N

• a, b, and c are vectors of fixed length (typically

2, 4, 8, 16, or 32)

Single instruction, multiple data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

• Only for special cases:

• Multiple instructions are executed

simultaneously

• Each instruction operates on a single data

element

• Used e.g., for fault tolerance, or pipelined

algorithms implemented on FPGAs

• Example (naive detection of catastrophic

cancellation):

• PU1: z1 = x*x – y*y

PU2: z2 = (x-y) * (x+y)

if (z1 – z2 > eps) { ... }

Multiple instruction, single data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

• Traditional cluster computer

• Multiple instructions are executed

simultaneously

• Each instruction operates on multiple data

elements simultaneously

• Typical execution pattern used in task-parallel

computing

• Example:

• PU1: c = a + b

PU2: z = (x-y) * (x+y)

variables can also vectors of fixed length (se

SIMD)

Multiple instruction, multiple data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

• Today, we have

• 6-60 processors per chip

• 8 to 32-wide SIMD instructions

• Combines both SISD, SIMD, and MIMD on a single chip

• Heterogeneous cores (e.g., CPU+GPU on single chip)

Multi- and many-core processor designs

Multi-core CPUs:
x86, SPARC, Power 7

Accelerators:
GPUs, Xeon Phi

Heterogeneous chips:
Intel Haswell, AMD APU

• A single core

• L1 and L2 caches

• 8-wide SIMD units (AVX, single precision)

• 2-way Hyper-threading (hardware threads)

When thread 0 is waiting for data,

thread 1 is given access to SIMD units

• Most transistors used for cache and logic

• Optimal number of FLOPS per clock cycle:

• 8x: 8-way SIMD

• 6x: 6 cores

• 2x: Dual issue (fused mul-add / two ports)

• Sum: 96!

Multi-core CPU architecture

∙∙∙

L3 cache

Simplified schematic of CPU design

Core 1

ALU+FPU

Th
read

 0

L1 cache

L2 cache

Th
read

 1

Registers

Core 6

ALU+FPU

Th
read

 0

L1 cache

L2 cache

Th
read

 1

Registers

• A single core (Called streaming multiprocessor, SMX)

• L1 cache, Read only cache, texture units

• Six 32-wide SIMD units (192 total, single precision)

• Up-to 64 warps simultaneously (hardware warps)

Like hyper-threading, but a warp is 32-wide SIMD

• Most transistors used for floating point operations

• Optimal number of FLOPS per clock cycle:

• 32x: 32-way SIMD

• 2x: Fused multiply add

• 6x: Six SIMD units per core

• 15x: 15 cores

• Sum: 5760!

Many-core GPU architecture

∙∙∙

L2 cache

Simplified schematic of GPU design

SMX 1

ALU+FPU

Th
read

 0

L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

SMX 15

ALU+FPU

Th
read

 0

L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

• Discrete GPUs are connected to the CPU

via the PCI-express bus

• Slow: 15.75 GB/s each direction

• On-chip GPUs use main memory as

graphics memory

• Device memory is limited but fast

• Typically up-to 6 GB

• Up-to 340 GB/s!

• Fixed size, and cannot be expanded with

new dimm’s (like CPUs)

Heterogeneous Architectures

Multi-core CPU GPU

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB)

~30 GB/s

~340 GB/s~60 GB/s

Parallel algorithm design

• When the processors are symmetric (identical),

we tend to use symmetric multiprocessing.

• Tasks will take the same amount of time

independent of which processor it runs on.

• All procesors can see everything in memory

• If we have different processors,

we revert to heterogeneous computing.

• Tasks will take a different amount of time

on different processors

• Not all tasks can run on all processors.

• Each processor sees only part of the memory

• We can even mix the two above, add message passing, etc.!

Type of parallel processing

Multi-core CPU GPU

Multi-core CPU

• Most algorithms are like baking recipies,

Tailored for a single person / processor:

• First, do A,

• Then do B,

• Continue with C,

• And finally complete by doing D.

• How can we utilize an "army of identical chefs"?

• How can we utilize an "army of different chefs"?

Mapping an algorithm to a parallel architecture

Picture: Daily Mail Reporter , www.dailymail.co.uk

• Data parallelism performs the same operation

for a set of different input data

• Scales well with the data size:

The larger the problem, the more processors you can utilize

• Trivial example:

Element-wise multiplication of two vectors:

• c[i] = a[i] * b[i] i=0…N

• Processor i multiplies elements i of vectors a and b.

Data parallel workloads

• Task parallelism divides a problem into subtasks which can be solved individually

• Scales well for a large number of tasks:

The more parallel tasks, the more processors you can use

• Example: A simulation application:

• Note that not all tasks will be able to fully utilize the processor

Task parallel workloads 1/3

Processor 4

Processor 1

Processor 2

Processor 3

Simulate physics

Calculate statistics

Write statistics to disk

Render GUI

• Another way of using task parallelism is

to execute dependent tasks on different processors

• Scales well with a large number of tasks, but performance limited by slowest stage

• Example: Pipelining dependent operations

• Note that the gray boxes represent idling: wasted clock cycles!

Task parallel workloads 2/3

Processor 4

Processor 1

Processor 2

Processor 3

Read data

Compute statistics

Write data

Process statistics

Read data

Compute statistics

Process statistics

Write data Write data

Read data

Compute statistics

Process statistics

• A third way of using task parallelism is

to represent tasks in a directed acyclic graph (DAG)

• Scales well for millions of tasks, as long as the overhead of executing each task is low

• Example: Cholesky inversion

• “Gray boxes” are minimized

Task parallel workloads 3/3

Time Time

Example from Dongarra, On the Future of High Performance
Computing: How to Think for Peta and Exascale Computing, 2012

• Most algorithms contains

a mixture of work-loads:

• Some serial parts

• Some task and / or data parallel parts

• Amdahl’s law:

• There is a limit to speedup offered by parallelism

• Serial parts become the bottleneck for a

massively parallel architecture!

• Example: 5% of code is serial: maximum speedup

is 20 times!

Limits on performance 1/4

S: Speedup
P: Parallel portion of code
N: Number of processorsGraph from Wikipedia, user Daniels220, CC-BY-SA 3.0

• Gustafson's law:

• If you cannot reduce serial parts of

algorithm, make the parallel portion

dominate the execution time

• Essentially: solve a bigger problem!

Limits on performance 2/4

S: Speedup
P: Number of processors
α: Serial portion of code

Graph from Wikipedia, user Peahihawaii, CC-BY-SA 3.0

• Moving data has become the major bottleneck in computing.

• Downloading 1GB from Japan to Switzerland consumes

roughly the energy of 1 charcoal briquette1.

• A FLOP costs less than moving one byte2.

• Key insight: flops are free, moving data is expensive

Limits on performance 3/4

1 Energy content charcoal: 10 MJ / kg, kWh per GB: 0.2 (Coroama et al., 2013), Weight charcoal briquette: ~25 grams

2Simon Horst, Why we need Exascale, and why we won't get there by 2020, 2014

• A single precision number is four bytes

• You must perform over 60 operations for each

float read on a GPU!

• Over 25 operations on a CPU!

• This groups algorithms into two classes:

• Memory bound

Example: Matrix multiplication

• Compute bound

Example: Computing π

• The third limiting factor is latencies

• Waiting for data

• Waiting for floating point units

• Waiting for ...

Limits on performance 4/4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

2000 2005 2010 2015

Optimal FLOPs per byte (SP)

CPU

GPU

• Total performance is the product of
algorithmic and numerical performance

• Your mileage may vary: algorithmic
performance is highly problem
dependent

• Many algorithms have low numerical
performance

• Only able to utilize a fraction of the
capabilities of processors, and often
worse in parallel

• Need to consider both the algorithm and
the architecture for maximum
performance

Algorithmic and numerical performance

N
u

m
er

ic
al

 p
er

fo
rm

an
ce

Algorithmic performance

Programming GPUs

• GPUs were first programmed using OpenGL and other graphics languages

• Mathematics were written as operations on graphical primitives

• Extremely cumbersome and error prone

• Showed that the GPU was capable of outperforming the CPU

Early Programming of GPUs

[1] Fast matrix multiplies using graphics hardware, Larsen and McAllister, 2001

Input B

Input A

Output

Geometry

Element-wise matrix multiplication Matrix multiplication

Examples of Early GPU Research at SINTEF

Preparation for FEM (~5x)

Euler Equations (~25x)
Marine aqoustics (~20x)

Self-intersection (~10x)

Registration of medical
data (~20x)

Fluid dynamics and FSI (Navier-Stokes)

Inpainting (~400x matlab code)

Water injection in a fluvial reservoir (20x)
Matlab

Interface Linear algebra

SW Equations (~25x)

Examples of GPU Use Today

0%

5%

10%

15%

Aug/2007 Jul/2008 Jul/2009 Jul/2010 Jul/2011 Jul/2012

GPU Supercomputers on the Top 500
List

• Thousands of academic papers
• Big investment by large software

companies
• Standard in supercomputers
• Huge boost with AI!

GPU Programming Languages

20102000 2005

DirectCompute

AMD CTM / CAL

DirectX

BrookGP
U

OpenCL

NVIDIA CUDA

1st gen: Graphics APIs 2nd gen: (Academic) Abstractions 3rd gen: C- and pragma-based languages

AMD Brook+

PGI Accelerator

OpenACC

C++ AMP

2015

• CUDA has the most mature development ecosystem

• Released by NVIDIA in 2007

• Enables programming GPUs using a C-like language

• Essentially C / C++ with some additional syntax for

executing a function in parallel on the GPU

• OpenCL is a very good alternative that also runs on

non-NVIDIA hardware (Intel Xeon Phi, AMD GPUs, CPUs)

• Equivalent to CUDA, but slightly more cumbersome.

• We will use pyopencl later on!

• For high-level development, languages like

OpenACC (pragma based) or C++ AMP (extension to C++) exist

• Typicall works well for toy problems,

but may not always work too well for complex algorithms

Computing with CUDA

• We want to add two matrices,

a and b, and store the result in c.

• For best performance, loop through one row at a time

(sequential memory access pattern)

Example: Adding two matrices in CUDA 1/2

Matrix from Wikipedia: Matrix addition

C
+

+
o

n
 C

P
U

void addFunctionCPU(float* c, float* a, float* b,
unsigned int cols, unsigned int rows) {

for (unsigned int j=0; j<rows; ++j) {
for (unsigned int i=0; i<cols; ++i) {

unsigned int k = j*cols + i;
c[k] = a[k] + b[k];

}
}

}

GPU function

In
d

ic
es

C
al

ls
 G

P
U

fu

n
ct

io
n

__global__ void addMatricesKernel(float* c, float* a, float* b,

unsigned int cols, unsigned int rows) {

//Indexing calculations

unsigned int global_x = blockIdx.x*blockDim.x + threadIdx.x;

unsigned int global_y = blockIdx.y*blockDim.y + threadIdx.y;

unsigned int k = global_y*cols + global_x;

//Actual addition

c[k] = a[k] + b[k];

}

void addFunctionCUDA(float* c, float* a, float* b,

unsigned int cols, unsigned int rows) {

dim3 block(8, 8);

dim3 grid(cols/8, rows/8);

... //More code here: Allocate data on GPU, copy CPU data to GPU

addMatricesKernel<<<grid, block>>>(gpu_c, gpu_a, gpu_b, cols, rows);

... //More code here: Download result from GPU to CPU

}

Example: Adding two matrices in CUDA 2/2

Implicit double for loop
for (int blockIdx.x = 0;

blockIdx.x < grid.x;
blockIdx.x) { …

• Two-layered parallelism

• A block consists of threads:

Threads within the same block can

cooperate and communicate

• A grid consists of blocks:

All blocks run independently.

• Blocks and grid can be

1D, 2D, and 3D

• Global synchronization and communication

is only possible between kernel launches

• Really expensive, and should be avoided if

possible

Grids and blocks in CUDA

• CUDA and OpenCL have a virtually identical programming/execution model

• The largest difference is that OpenCL requires a bit more code to get started,

and different concepts have different names.

• The major benefit of OpenCL is that it can run on multiple different devices

• Supports Intel CPUs, Intel Xeon Phi, NVIDIA GPUs, AMD GPUs, etc.

• CUDA supports only NVIDIA GPUs.

CUDA versus OpenCL

CUDA OpenCL
__global__ function __kernel function
__device__ function No annotation necessary
__constant__ variable declaration __constant variable declaration
__device__ variable declaration __global variable declaration
__shared__ variable declaration __local variable declaration

CUDA versus OpenCL
CUDA OpenCL

SM (Stream Multiprocessor) CU (Compute Unit)
Thread Work-item
Block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

CUDA OpenCL
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
blockIdx * blockDim + threadIdx get_global_id()
gridDim * blockDim get_global_size()

CUDA OpenCL
__syncthreads() barrier()
__threadfence() No direct equivalent
__threadfence_block() mem_fence()
No direct equivalent read_mem_fence()
No direct equivalent write_mem_fence()

CUDA OpenCL

cudaGetDeviceProperties() clGetDeviceInfo()

cudaMalloc() clCreateBuffer()

cudaMemcpy()
clEnqueueRead(Write)Buffer
()

cudaFree() clReleaseMemObj()

kernel<<<...>>>() clEnqueueNDRangeKernel()

C
al

ls
 G

P
U

fu

n
ct

io
n

GPU function

OpenCL matrix addition

__kernel void addMatricesKernel(__global float* c, __global float* a,

__global float* b, unsigned int cols, unsigned int rows) {

//Indexing calculations

unsigned int global_x = get_global_id(0);

unsigned int global_y = get_global_id(1);

unsigned int k = global_y*cols + global_x;

//Actual addition

c[k] = a[k] + b[k];

}

void addFunctionOpenCL() {

... //More code here: Allocate data on GPU, copy CPU data to GPU

//Set arguments

clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&gpu_c);

clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&gpu_a);

clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&gpu_b);

clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&cols);

clSetKernelArg(ckKernel, 4, sizeof(cl_int), (void*)&rows);

// Launch kernel

clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &gws, &lws, 0, NULL, NULL);

... //More code here: Download result from GPU to CPU

}

Using Python for GPU Computing

• OpenCL / CUDA are C APIs, which require working in C,

and possibly long compilation times

• Even the simplest GPU example will require a lot of boilerplate code

• Pyopencl and PyCuda solves this, by enabling access to the GPU through Python

Example in PyOpenCL – add two vectors

%%cl_kernel
__kernel void add_kernel(__global const float *a, __global const float *b,
__global float *c) {

int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

#Upload data to the device, allocate output data
…

#Execute program on device
add_kernel(cl_queue, a.shape, None, a_g, b_g, c_g)

#Allocate data on the host for result
c = np.empty_like(a)

#Download data from device to host
cl.enqueue_copy(cl_queue, c, c_g)

Summary 1/2

• A function on the GPU is called a kernel

• Runs in parallel on the GPU

• Uses massive parallelism to hide memory latency

• The GPU has its own memory

• Data movement on the GPU is fast

• Data movement to / from the GPU is slow

• You need to upload/download data to/from the GPU

• The GPU uses block decomposition
• In both CUDA and OpenCL, we have blocks consisting of threads (some synchronization possible)

• The global grid consists of a set of blocks that run in parallel (no synchronization possible)

Summary 2/2

• GPU computing can give you 10x improvement
• Clever algorithm design can give you higher performance

• "Porting" to the GPU can give you a slowdown!

• Getting started with GPU computing is easy
• Installing drivers and tools can be a challenge

• Using e.g. miniconda environments makes it much easier with tools!

• Python for developing code is recommended

