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• A conservation law describes that a quantity is conserved

• Comes from the physical laws of nature

• Example: Newtons first law: When viewed in an inertial reference

frame, an object either remains at rest or continues to move at

a constant velocity, unless acted upon by an external force.

• Example: Newtons third law: When one body exerts a force on a second body, the second body 

simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

• More examples: conservation of mass (amount of water) in shallow water, amount of energy (heat) in 

the heat equation, linear momentum, angular momentum, etc. 

• Conservation laws are mathematically formulated as partial differential equations: PDEs

Conservation Laws

Isaac Newton, by Gottfried Kneller, public 
domain



• Let us look at Newtons second law

• The vector sum of the external forces F on an object is equal to the mass m of that object multiplied by the 

acceleration vector a of the object: 

• Ԧ𝐹 = 𝑚 ⋅ Ԧ𝑎

• We know that acceleration, a, is the rate of change of speed over time, or in other words

• 𝑎 = 𝑣′ =
𝑑𝑣

𝑑𝑡

• We can then write Newtons second law as an ODE:

• 𝐹 = 𝑚
𝑑𝑣

𝑑𝑡

Ordinary Differential Equations (ODEs)



• From Newton's second law, we can derive a 

simple ODE for the trajectory of a projectile

• Acceleration due to gravity:

• Ԧ𝑎 = [0, 0, 9.81]

• Velocity as a function of time

• Ԧ𝑣 𝑡 = 𝑣𝑜 + 𝑡 ∙ Ԧ𝑎

• Change in position, p, over time is a function of the velocity

•
𝑑 Ԧ𝑝

𝑑𝑡
= Ԧ𝑣(𝑡)

• We can solve this ODE analytically with pen and paper, but for more complex ODEs, that becomes infeasible

• The term "computer" used to be the profession for those who (amongst other things) calculated advanced 

projectile trajectories (air friction etc.).

Trajectory of a projectile



• To solve the ODE numerically on a computer, we discretize it

• To discretize an ODE is to replace the continuous derivatives

with discrete derivatives, and to impose a discrete grid.

• In our ODE, we discretize in time, so that

𝑑 Ԧ𝑝

𝑑𝑡
= Ԧ𝑣(𝑡)

becomes 

Ԧ𝑝𝑛+1 − Ԧ𝑝𝑛

Δ𝑡
= Ԧ𝑣 𝑛 ∙ Δ𝑡

Here, Δ𝑡 is the grid spacing in time, and superscript n denotes the time step

Solving a simple ODE numerically



• Recall our discretization

Ԧ𝑝𝑛+1 − Ԧ𝑝𝑛

Δ𝑡
= Ԧ𝑣 𝑛 ∙ Δ𝑡

Rewriting so that n+1 is on the left hand side, we get an explicit formula

Ԧ𝑝𝑛+1 = Ԧ𝑝𝑛 + Δ𝑡 ⋅ Ԧ𝑣 𝑛 ⋅ Δ𝑡

• Given initial conditions, that is the initial position, 𝑝0, and the initial velocity, 𝑣0, 

we can now simulate!

• Example:

Initial conditions

t p v

0 0.0 0.0

0.1 p0 + dt*v0 = 0.0 v0 - t*9.81 = -0.981

0.2 p1 - dt*v1 = -0.0981 v0 - t*9.81 = -1.962

0.2 … …



• Enable in-line plotting

%pylab inline

• Set initial conditions

v0 = np.array([200.0, 100.0])

p0 = np.array([0.0, 0.0])

dt = 0.1

nt = 100

a = np.array([0.0, -9.81])

• Create a for-loop with our time-stepping

for i in range(nt):

t = ???

v1 = ???

p1 = ???

#Plot 

plot(p1[0], p1[1], 'x')

#Swap p0 and p1

p0, p1 = p1, p0

Projectile trajectory Python implementation

Ԧ𝑝𝑛+1 = Ԧ𝑝𝑛 + Δ𝑡 ⋅ Ԧ𝑣 𝑛 ⋅ Δ𝑡



• Enable in-line plotting

%pylab inline

• Set initial conditions

v0 = np.array([200.0, 100.0])

p0 = np.array([0.0, 0.0])

dt = 0.1

nt = 100

a = np.array([0.0, -9.81])

• Create a for-loop with our time-stepping

for i in range(nt):

t = n*dt

v1 = v0+ t*a

p1 = p0 + dt*v1

#Plot 

plot(p1[0], p1[1], 'x')

#Swap p0 and p1

p0, p1 = p1, p0

Projectile trajectory Python implementation

Ԧ𝑝𝑛+1 = Ԧ𝑝𝑛 + Δ𝑡 ⋅ Ԧ𝑣 𝑛 ⋅ Δ𝑡



• When writing simulator code it is essential to check for correctness.

• The analytical solution to our problem is

p 𝑡 =
1

2
Ԧ𝑎𝑡2 + 𝑡 ⋅ 𝑣0 + 𝑝0

• Let us compare the solutions

Particle trajectory results

dt=1 dt=0.5 dt=0.25



• We have used a very simple integration rule (or 

approximation to the derivative)

• Our rule is known as forward Euler

𝑝𝑛+1 = 𝑝𝑛 + Δ𝑡 ⋅ Ԧ𝑣

• We can get much higher accuracy with more 

advanced techniques such as Runge-Kutta 2

𝑝∗ = 𝑝𝑛 + Δ𝑡 ⋅ Ԧ𝑣(𝑛 ⋅ Δ𝑡)

𝑝∗∗ = 𝑝∗ + Δ𝑡 ⋅ Ԧ𝑣 𝑛 + 1 ⋅ Δ𝑡

𝑝𝑛+1 =
1

2
𝑝𝑛 + 𝑝∗∗

• In summary, we need to think about how we

discretize our problem!

More accuracy

dt=1



• Partial differential equations (PDEs) are much like 

ordinary differential equations (ODEs)

• They consist of derivatives, but in this case

partial derivatives.

• Partial derivatives are derivatives with respect 

to one variable

• Example:

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦2

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 𝑦2

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 2 ⋅ 𝑥 ⋅ 𝑦

• These are often impossible to solve analytically, and we must discretize them and solve on a computer.

Partial Differential Equations (PDEs)



• Many natural phenomena can (partly) be described mathematically as such conservation laws

• Magneto-hydrodynamics

• Traffic jams

• Shallow water

• Groundwater flow

• Tsunamis

• Sound waves

• Heat propagation

• Pressure waves

• …

Partial Differential Equations (PDEs)

"Magnificent CME Erupts on the Sun - August 31" by NASA Goddard Space 
Flight Center - Flickr: Magnificent CME Erupts on the Sun - August 31. 

Licensed under CC BY 2.0 via Wikimedia Commons



Example: The linear wave equation

• Can describes vibration of string (in 1D) 

• u is the deflection of the string

• c is a material property (related to wave propagation speed)

𝜕2𝑢

𝜕𝑡2
= 𝑐2 𝛻2𝑢

Violin image CC0



• The heat equation is a prototypical PDE

(partial differential equation)

• u is the temperature, kappa is the diffusion 

coefficient, t is time, and x is space.

• It states that the rate of change in temperature over time

is equal the second derivative of the temperature with 

respect to space multiplied by the heat diffusion coefficient

The Heat Equation



• We can discretize this PDE by replacing the continuous derivatives with discrete 

approximations

• The discrete approximations use a set of grid points in space and time

• The choice of discrete derivatives and grid points gives rise to different discretizations

with different properties

Solving the heat equation



• From the discretized PDE, we can create a numerical scheme by reordering the terms

• This discretization gives us one equation per grid point which we must solve

Solving the heat equation



• We can write up the equation for each cell as follows:

• Cell ui: −𝑟 𝑢𝑖−1
𝑛 + 1 + 2𝑟 𝑢𝑖

𝑛 − 𝑟 𝑢𝑖+1
𝑛 = ui

n−1

• Cell u1: −𝑟 𝑢0
𝑛 + 1 + 2𝑟 𝑢1

𝑛 − 𝑟 𝑢2
𝑛 = u1

n−1

• Cell u2: −𝑟 𝑢1
𝑛 + 1 + 2𝑟 𝑢2

𝑛 − 𝑟 𝑢3
𝑛 = u2

n−1

• Problem:

• Cell u-1 does not exist (outside domain!)

• Cell u7 does not exist (outside domain!)

• These are called boundary conditions (what the temperature is at the boundary)

Solving the heat equation



• We organize all the equations we have into a matrix equation Ax=b

• We gather the coefficients in A

• We gather the unknowns (𝑢𝑛) in the vector x

• We gather the known state (𝑢𝑛−1)in the vector b

• For the first and last equations, we need boundary conditions!

Solving a PDE

???

???



• Boundary conditions describe how the solution should behave at the boundary of our 

domain

• Different boundary conditions give very different solutions!

• A simple boundary condition to implement is "fixed boundaries" / Dirichlet

boundaries

• This simply sets the temperature at the end points to a fixed value

Boundary conditions



• We now have a well-formed problem, if we give some initial heat distribution, 𝑢0

• We can solve the matrix equation 𝐴𝑥 = 𝑏 using linear algebra solvers (Gaussian 

elimination, conjugate gradients, tri-diagonal solvers, etc.)

• Choosing the right solver is often key to performance: CUBLAS, CUSPARSE, CUSP, …

Solving the heat equation

A x b



• The example so far is quite inefficient and boring…

• It solves only in 1D

• Many real-world problems require 2D or 3D simulations

• It does not utilize any knowledge about the matrix A or the solution

• A is tridiagonal: we are storing and computing 𝑛2elements, whilst we only 

need to store the 3𝑛 non-zero elements

• It uses a regular grid

• Non-regular grids give us local refinement where we need it

• Adding more features gives a more complex picture

• The matrix A quickly gets more complex with more features (2D/3D/non-

regular grids/etc.)

• More complex problems have more equations, and the A matrix must often 

be re-calculated for each simulation step (non-constant coefficients)

The Heat Equation on the GPU



The Heat Equation on the GPU
• The presented numerical scheme is called an implicit scheme

• Implicit schemes are often sought after

• They allow for large time steps,

• They can be solved using standard tools

• Allow complex geometries

• They can be very accurate

• …

• However…

• Solution time is often a function of how long it takes to solve Ax=b and 
linear algebra solvers can be slow and memory hungry, especially on the GPU

• for many time-varying phenomena, we are also interested in the temporal 
dynamics of the problem



• For problems in which disturbances travel 

at a finite speed, we can change the time

derivative from a backward to a forward 

difference.

• This gives us an explicit numerical scheme (compared to the implicit scheme already shown)

Explicit scheme for the heat equation



• An explicit scheme for the heat equation gives us an explicit formula 

for the solution at the next timestep for each cell!

• It is simply a weighted average of the two nearest neighbors and the cell itself

• This is perfectly suited for the GPU: each grid cell at the next time 

step can be computed independently of all other grid cells!

• However, we must have much smaller time steps than in the implicit scheme

Explicit scheme for the heat equation



• Consider what would happen if you used a timestep of e.g., 10 hours for a stencil computation. 

• It is impossible, numerically, for a disturbance to travel more than one grid cell

• Physically, however, the disturbance might have travelled half the domain

• Using too large timesteps leads to unstable simulation results 

(too large timesteps in implicit schemes, you only loose accuracy)

• The restriction on how large the timestep can be is called the 

Courant-Friedrichs-Levy condition, or more commonly, the CFL condition

• Find the fastest propagation speed within the domain, and the timestep is inversely proportional to this speed. 

• For the heat equation:

Timestep restriction



• General setup

%pylab inline

import numpy as np

• Initial conditions

nx = 100

u0 = np.random.rand(nx)

u1 = np.empty(nx)

kappa = 1.0

dx = 1.0

dt = ???

nt = 500

• Simulation for loop for internal cells

for n in range(nt):

for i in range(1, nx-1):

The heat equation in Python

• Explicit heat equation
u1[i] = ???

???
???

• Boundary conditions
u1[0] = ???
u1[nx-1] = ???

• Swap u0 and u1
u0, u1 = u1, u0



• General setup

%pylab inline

import numpy as np

• Initial conditions

nx = 100

u0 = np.random.rand(nx)

u1 = np.empty(nx)

kappa = 1.0

dx = 1.0

dt = 0.8 * dx*dx / (2.0*kappa)

nt = 500

• Simulation for loop for internal cells

for n in range(nt):

for i in range(1, nx-1):

The heat equation in Python

• Explicit heat equation
u1[i] = u0[i] 

+ kappa*dt/(dx*dx) 
* (u0[i-1] - 2*u0[i] + u0[i+1])

• Boundary conditions
u1[0] = u0[0]
u1[nx-1] = u0[nx-1]

• Swap u0 and u1
u0, u1 = u1, u0



• We see that given something with random heat inside, 

our implementation will smear the data, and interpolate

the end points

Heat equation results



• Recall the discretized heat equation

• We also need initial conditions, and boundary conditions to be able to simulate

Initial conditions

• 𝑢𝑖
0 = 𝑟𝑎𝑛𝑑 ∀ 𝑖

Boundary conditions (Fixed value, socalled Dirichlet boundary condition)

• 𝑢0
𝑛 = 𝑢0

0, 𝑢𝑘
𝑛 = 𝑢𝑘

0 ∀ 𝑛

• k = nx = number of cells

• We see that every 𝑢𝑖
𝑛+1 can be computed independently for internal cells (i != 0, k)

• 𝑢𝑖
𝑛+1

= 𝑢𝑖
𝑛 + 𝑟(𝑢𝑖−1

𝑛 −2𝑢𝑖
𝑛 + 𝑢𝑖+1

𝑛 )

The heat equation in OpenCL



• The OpenCL kernel

The heat equation in OpenCL

%%cl_kernel
__kernel void heat_eq_1D(__global float *u1, 

__global const float *u0, 
float kappa, float dt, float dx) {

int i = get_global_id(0); 
int nx = get_global_size(0); //Get total number of cells

//Internal cells
if (i > 0 && i < nx-1) {

u1[i] = u0[i] + kappa*dt/(dx*dx) * (u0[i-1] - 2*u0[i] + u0[i+1]);
}
//Boundary conditions (socalled ghost cells)
else { 

u1[i] = u0[i];
}

}



• Uploading initial conditions

The heat equation in OpenCL

#CPU data
u0 = np.random.rand(50).astype(np.float32)

#Number of cells
nx = len(u0)

mf = cl.mem_flags

#Upload data to the device
U0_g = cl.Buffer(cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u0)

#Allocate output buffers
U1_g = cl.Buffer(cl_ctx, mf.READ_WRITE, u0.nbytes)



The heat equation in OpenCL

#Set number of timesteps
nt = 50

#Calculate timestep size from CFL condition
dt = 0.8 * dx*dx / (2.0*kappa)

#Loop through all the timesteps
for i in range(nt):

#Execute kernel on device with nx threads
heat_eq_1D(cl_queue, (nx,1), None, u1_g, u0_g, 

numpy.float32(kappa),  numpy.float32(dt),  numpy.float32(dx))

#Download and plot solution every fifth iteration
if (i % 10 == 0):

u1 = np.empty(nx, dtype=np.float32)
cl.enqueue_copy(cl_queue, u0_g, u1)
plot(u1, label="u_"+str(i))

#Swap variables
u0_g, u1_g = u1_g, u0_g



• The kernel smooths the input data as expected,

and the boundary values remain unchanged

• If we run a huge amount of iterations, the

boundary conditions (end points)

dictate the solution

The heat equation in OpenCL



• In two dimensions, the heat equation can be written

• This simply adds the second or der partial derivative of u with respect to the y dimension.

• For the code, we have to now solve in 2 dimensions, not only one!

Two dimensions



Example: The 2D wave equation 𝜕2𝑢

𝜕𝑡2
= 𝑐

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

1

Δ𝑡2
(𝑢𝑖,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗

𝑛−1)

=
𝑐

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) +
𝑐

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

Høy C, ©Bård Breivik/BONO. Foto: Terje Heiestad. UiO



• In 1D, we started with

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2

• And ended up with the numerical scheme

𝑢𝑖
𝑛+1

= 𝑢𝑖
𝑛 + 𝑘

Δ𝑡

Δ𝑥2
(𝑢𝑖−1

𝑛 −2𝑢𝑖
𝑛 + 𝑢𝑖+1

𝑛 )

• In 2D, we start with

𝜕𝑢

𝜕𝑡
= k𝛻2𝑢 = 𝑘

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

• And end up equivalently with

𝑢𝑖,𝑗
𝑛+1

= 𝑢𝑖,𝑗
𝑛 + 𝑘

Δ𝑡

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) + 𝑘
Δ𝑡

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

• All we have done, is add a second index, j, and the second order partial derivative of u with respect to y.

Heat Equation in 2D



• We typically treat 2D arrays using an interpretation of a 1D array

• It is fast, and wastes no memory

2D array indexing

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

nx = 10

ny = 5

u(i, j) = u[j*nx + j]

i = 4, j = 2    =>    u(i, j) = u[2*10 + 4] = u[24]



OpenCL Kernel

__kernel void heat_eq_2D(__global float *u1, __global const float *u0, 
float kappa, float dt, float dx, float dy) {

//Get total number of cells
int nx = get_global_size(0); 
int ny = get_global_size(1);
int i = ???;    int j = ???;

//Calculate the four indices of our neighboring cells
int center = j*nx + i;
int north = (j+1)*nx + i;    int south = ??? int east = ??? int west = ???

//Internal cells
if (i > 0 && i < nx-1 && j > 0 && j <ny-1) {

u1[center] = u0[center] + ???
}
//Boundary conditions (ghost cells)
else { 

u1[center] = u0[center];
}

}



Initial conditions

nx = 100
ny =nx
kappa = 1.0
dx = 1.0
dy = 1.0
dt = 0.4 * min(dx*dx / (2.0*kappa), dy*dy / (2.0*kappa))
u0 = np.random.rand(ny, nx).astype(np.float32)

mf = cl.mem_flags

#Upload data to the device
u0_g = cl.Buffer(cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u0)

#Allocate output buffers
u1_g = cl.Buffer(cl_ctx, mf.READ_WRITE, u0.nbytes)



Execute kernel

nt = 500
for i in range(0, nt):

#Execute program on device
heat_eq_2D(cl_queue, (cl_data.nx, cl_data.ny), None, 

u1_g, u0_g, 
numpy.float32(kappa), numpy.float32(dt), numpy.float32(dx), numpy.float32(dy))

#Swap the two timesteps
u0_g, u1_g = u1_g, u0_g

#Plot results
if (i % 50 == 0):

figure()
u0 = np.empty((nx, ny), dtype=np.float32)
cl.enqueue_copy(cl_queue, u0, u0_g)
pcolor(u0)



• The heat equation can be written

𝜕𝑢

𝜕𝑡
= k𝛻2𝑢 = 𝑘

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

which gave the numerical scheme

𝑢𝑖,𝑗
𝑛+1

= 𝑢𝑖,𝑗
𝑛 + 𝑘

Δ𝑡

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) + 𝑘
Δ𝑡

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

• The linear wave equation can be written

𝜕2𝑢

𝜕𝑡2
= c𝛻2𝑢 = 𝑐

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

which only changes the left hand side. Here c is the wave propagation speed coefficient

We can write the numerical scheme as 

1

Δ𝑡2
(𝑢𝑖,𝑗

𝑛+1
− 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗
𝑛−1) =

𝑐

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) +
𝑐

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

Linear Wave Equation



• Rewriting

1

Δ𝑡2
(𝑢𝑖,𝑗

𝑛+1
− 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗
𝑛−1) =

𝑐

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) +
𝑐

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

We get

𝑢𝑖,𝑗
𝑛+1 = 2𝑢𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗
𝑛−1 +

𝑐Δ𝑡2

Δ𝑥2
(𝑢𝑖−1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖+1,𝑗

𝑛 ) +
𝑐Δ𝑡2

Δ𝑦2
(𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 )

• The major difference with the heat equation is that we now need two timesteps of u to compute the next timestep!

Linear Wave Equation



Simulation loop

for i in range(0, nt):
#Execute program on device
linear_wave_2D(cl_queue, (nx,ny), None, 

u2_g, u1_g, u0_g, 
numpy.float32(c), numpy.float32(dt), numpy.float32(dx), numpy.float32(dy))

#Impose boundary conditions
linear_wave_2D_bc(cl_queue, (nx, ny), None, u2_g)

#Swap variables
u0_g, u1_g, u2_g = u1_g, u2_g, u0_g



Boundary conditions

__kernel void linear_wave_2D_bc(__global float* u) {
int nx = get_global_size(0);     int ny = get_global_size(1); 
int i = get_global_id(0);     int j = get_global_id(1); 

//Calculate the four indices of our neighboring cells
int center = j*nx + i;
int north = …;     int south = …;    int east = …;    int west = …;

if (i == 0) {
u[center] = u[east];

}
else if (i == nx-1) {

u[center] = u[west];
}
else if (j == 0) {

u[center] = u[north];
}
else if (j == ny-1) {

u[center] = u[south];
}

}


