
CONSERVATION LAWS ON GPUS:
COMPUTING PI WITH CUDA

André R. Brodtkorb

Researcher, Department of Mathematics and Cybernetics, SINTEF Digital

Associate Professor, OsloMet – Oslo Metropolitan University

Computing π with CUDA

• There are many ways of estimating Pi. One way is to

estimate the area of a circle.

• Sample random points within one quadrant

• Find the ratio of points inside to outside the circle

• Area of quarter circle: Ac = πr2/4

Area of square: As = r2

• π = 4 Ac/As ≈ 4 #points inside / #points outside

• Increase accuracy by sampling more points

• Increase speed by using more nodes

• Algorithm:

1. Sample random points within a quadrant

2. Compute distance from point to origin

3. If distance less than r, point is inside circle

4. Estimate π as 4 #points inside / #points outside

Computing π with CUDA

pi=3.1345 pi=3.1305 pi=3.1597

pi=3.14157

Remember: The algorithms serves as an example:
it's far more efficient to estimate π as 22/7, or 355/113☺

2
 &

 3
1

4

float computePi(int n_points) {

int n_inside = 0;

for (int i=0; i<n_points; ++i) {

//Generate coordinate

float x = generateRandomNumber();

float y = generateRandomNumber();

//Compute distance

float r = sqrt(x*x + y*y);

//Check if within circle

if (r < 1.0f) { ++n_inside; }

}

//Estimate Pi

float pi = 4.0f * n_inside / static_cast<float>(n_points);

return pi;

}

Serial CPU code (C/C++)

float computePi(int n_points) {
int n_inside = 0;
#pragma omp parallel for reduction(+:n_inside)
for (int i=0; i<n_points; ++i) {
//Generate coordinate
float x = generateRandomNumber();
float y = generateRandomNumber();
//Compute distance
float r = sqrt(x*x + y*y);
//Check if within circle
if (r <= 1.0f) { ++n_inside; }
}
//Estimate Pi
float pi = 4.0f * n_inside / static_cast<float>(n_points);
return pi;

}

Parallel CPU code (C/C++ with OpenMP)

Make sure that every
expression involving
n_inside modifies the
global variable using
the + operator

Run for loop in
parallel using multiple
threads

• Parallel: 3.8 seconds @ 100% CPU

• Serial: 30 seconds @ 10% CPU

Performance

GPU function__global__ void computePiKernel1(unsigned int* output) {

//Generate coordinate

float x = generateRandomNumber();

float y = generateRandomNumber();

//Compute radius

float r = sqrt(x*x + y*y);

//Check if within circle

if (r <= 1.0f) {

output[blockIdx.x] = 1;

} else {

output[blockIdx.x] = 0;

}

}

Parallel GPU version 1 (CUDA) 1/3

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information

float computePi(int n_points) {

dim3 grid = dim3(n_points, 1, 1);

dim3 block = dim3(1, 1, 1);

//Allocate data on graphics card for output
cudaMalloc((void**)&gpu_data, gpu_data_size);

//Execute function on GPU (“lauch the kernel”)

computePiKernel1<<<grid, block>>>(gpu_data);

//Copy results from GPU to CPU

cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size,
cudaMemcpyDeviceToHost);

//Estimate Pi

for (int i=0; i<cpu_data.size(); ++i) {

n_inside += cpu_data[i];

}

return pi = 4.0f * n_inside / n_points;

}

Parallel GPU version 1 (CUDA) 2/3

• Unable to run more than 65535 sample

points

• Barely faster than single threaded CPU

version for largest size!

• Kernel launch overhead appears to

dominate runtime

• The fit between algorithm and architecture

is poor:

• 1 thread per block: Utilizes at most 1/32

of computational power.

Parallel GPU version 1 (CUDA) 3/3

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

• CPU scalar: 1 thread, 1 operand on 1 data element

• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements

• GPU Warp: 32 threads, 32 operands on 32 data elements

• Exposed as individual threads

• Actually runs the same instruction

• Divergence implies serialization and masking

GPU Vector Execution Model

Scalar operation SSE/AVX operation Warp operation

Hardware automatically serializes and masks divergent code flow:

• Execution time is the sum of all branches taken

• Programmer is relieved of fiddling with element masks (which is necessary for SSE/AVX)

• Worst case 1/32 performance

• Important to minimize divergent code flow within warps!

• Move conditionals into data, use min, max, conditional moves.

Serialization and masking

3
2

 t
h

re
ad

s
p

e
r

b
lo

ck
N

ew
in

d
ex

in
g

__global__ void computePiKernel2(unsigned int* output) {
//Generate coordinate
float x = generateRandomNumber();
float y = generateRandomNumber();

//Compute radius
float r = sqrt(x*x + y*y);

//Check if within circle
if (r <= 1.0f) {

output[blockIdx.x*blockDim.x + threadIdx.x] = 1;
} else {

output[blockIdx.x*blockDim.x + threadIdx.x] = 0;
}

}

float computePi(int n_points) {

dim3 grid = dim3(n_points/32, 1, 1);

dim3 block = dim3(32, 1, 1);

…

//Execute function on GPU (“lauch the kernel”)

computePiKernel1<<<grid, block>>>(gpu_data);

…

}

Parallel GPU version 2 (CUDA) 1/2

• Unable to run more than 32*65535

sample points

• Works well with 32-wide SIMD

• Able to keep up with multi-threaded

version at maximum size!

• We perform roughly 16 operations per 4

bytes written (1 int): memory bound

kernel!

Optimal is 60 operations!

Parallel GPU version 2 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

__global__ void computePiKernel3(unsigned int* output, unsigned int seed) {
__shared__ int inside[32];

//Generate coordinate
//Compute radius
…

//Check if within circle
if (r <= 1.0f) {

inside[threadIdx.x] = 1;
} else {

inside[threadIdx.x] = 0;
}

… //Use shared memory reduction to find number of inside per block

Parallel GPU version 3 (CUDA) 1/4

Shared memory: a kind of “programmable cache”
We have 32 threads: One entry per thread

… //Continued from previous slide

//Use shared memory reduction to find number of inside per block
//Remember: 32 threads is one warp, which execute synchronously
if (threadIdx.x < 16) {

p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2];
p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];

}

if (threadIdx.x == 0) {
output[blockIdx.x] = inside[threadIdx.x];

}
}

Parallel GPU version 3 (CUDA) 2/4

• Shared memory is a kind of

programmable cache

• Fast to access (just slightly slower than

registers)

• Programmers responsibility to move

data into shared memory

• All threads in one block can see the

same shared memory

• Often used for communication between

threads

• Sum all elements in shared memory using

shared memory reduction

Parallel GPU version 3 (CUDA) 3/4

• Memory bandwidth use reduced

by factor 32!

• Good speed-up over

multithreaded CPU!

• Maximum size is still limited to

65535*32.

• Two ways of increasing size:

• Increase number of threads

• Make each thread do more work

Parallel GPU version 3 (CUDA) 4/4

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

__global__ void computePiKernel4(unsigned int* output) {
int n_inside = 0;

//Shared memory: All threads can access this
__shared__ int inside[32];
inside[threadIdx.x] = 0;

for (unsigned int i=0; i<iters_per_thread; ++i) {
//Generate coordinate
//Compute radius
//Check if within circle
if (r <= 1.0f) { ++inside[threadIdx.x]; }

}

//Communicate with other threads to find sum per block
//Write out to main GPU memory

}

Parallel GPU version 4 (CUDA) 1/2

• Overheads appears to dominate

runtime up-to 10.000.000 points:

• Memory allocation

• Kernel launch

• Memory copy

• Estimated GFLOPS: ~450

Thoretical peak: ~4000

• Things to investigate further:

• Profile-driven development*!

• Check number of threads,

memory access patterns,

instruction stalls, bank conflicts, ...

Parallel GPU version 4 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

GPU 4

*See e.g., Brodtkorb, Sætra, Hagen,
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013

• Previous slide indicates speedup of

• 100x versus OpenMP version

• 1000x versus single threaded version

• Theoretical performance gap is 10x: why so fast?

• Reasons why the comparison is fair:

• Same generation CPU (Core i7 3930K) and GPU (GTX 780)

• Code available on Github: you can test it yourself!

• Reasons why the comparison is unfair:

• Optimized GPU code, unoptimized CPU code.

• I do not show how much of CPU/GPU resources I actually use (profiling)

• I cheat with the random function (I use a simple linear congruential generator).

Comparing performance

