
CONSERVATION LAWS ON GPUS:
ADVANCED GPU

André R. Brodtkorb

Associate Professor, OsloMet – Oslo Metropolitan University

Researcher, Department of Mathematics and Cybernetics, SINTEF Digital

Blocks and grids in CUDA

• Cuda uses blocks for parallelism

• A block runs on one of the cores on the GPU

• You have no control over which blocks run when

• Cuda schedules multiple blocks to a single core at the same time

This gives memory parallelism to hide latencies!

• Threads within the same block can share some

memory (__shared__) and synchronize

• Threads in different blocks are independent

(no shared memory / synchronization)

• A block is divided into warps of 32

elements (SIMD execution)

• Discrete GPUs are connected to the CPU

via the PCI-express bus

• Slow: 15.75 GB/s each direction

• On-chip GPUs use main memory as

graphics memory

• Device memory is limited but fast

• Typically up-to 6 GB

• Up-to 340 GB/s!

• Fixed size, and cannot be expanded with

new dimm’s (like CPUs)

Heterogeneous Architectures

Multi-core CPU GPU

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB)

~30 GB/s

~340 GB/s~60 GB/s

• The GPU has multiple memory caches

• L1 and L2

• These cache instructions and data from global

memory

• Spilling registers to L1

• When there is not enough physical registers

available, some registers are moved to cache

• Can increase performance some times

• Controlled with –maxrregcount when compiling

CUDA

• Texture caches can also be used to speed up memory

reads from global memory

• Originally a cache specialized for games

• 2D layout and automatic coordinate transforms

Caches and texture memory

∙∙∙

L2 cache

Simplified schematic of GPU design

SMX 1

ALU+FPU

Th
read

 0
L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

SMX 15

ALU+FPU

Th
read

 0

L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

• Texture memory in CUDA is optimized for spatial locality

• Uses a space filling curve technology to store a 2D area in cache

• Really efficient for 2D memory access

• An extra cache that should be used if possible

• Caveat: The cache is read-only!

Texture memory in PyCUDA

• CPU scalar: 1 thread, 1 operand on 1 data element

• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements

• GPU Warp: 32 threads, 32 operands on 32 data elements

• Exposed as individual threads

• Actually runs the same instruction

• Divergence implies serialization and masking

GPU Vector Execution Model

Scalar operation SSE/AVX operation Warp operation

Hardware automatically serializes and masks divergent code flow:

• Execution time is the sum of all branches taken

• Programmer is relieved of fiddling with element masks (which is necessary for SSE/AVX)

• Worst case 1/32 performance

• Important to minimize divergent code flow within warps!

• Move conditionals into data, use min, max, conditional moves.

Serialization and masking

• Accessing a single memory address triggers transfer of a full cache line (128 bytes)

• The smallest unit transferrable over the memory bus

• Identical to how CPUs transfer data

• For peak performance, 32 threads should use 32 consecutive integers/floats

• This is referred to as coalesced reads

• On modern GPUs: Possible to transfer 32 byte segments: Better fit for random access!

• Slightly more complex in reality: see CUDA Programming Guide for full set of rules

Memory access 1/2

• GPUs have high bandwidth, and high latency

• Latencies are on the order of hundreds

to thousands of clock cycles

• Massive multithreading hides latencies

• When one warp stalls on memory request,

another warp steps in and uses execution units

• Effect: Latencies are completely hidden as long as you have enough memory

parallelism:

• More than 100 simultaneous requests for full cache lines per SM

• Far more for random access!

Memory access 2/2

Warp 1

Warp 2

Warp 3

Warp 5

Warp 4

SMX

For more details, see Paulius Micikevicius, GPU Performance Analysis and Optimization, 2013

• Reduction is the operation of finding a single number from a series of numbers

• Frequently used parallel building block in parallel computing

• We've already used it to compute π

• Examples:

• Find minimum, maximum, average, sum

• In general: Perform a binary operation on a set data

• CPU example:

Example: Parallel reduction

//Initialize to first element
T result = data[0];

//Loop through the rest of the elements
for (int i=1; i<data.size(); ++i) {

//Perform binary operator (e.g., op(a, b) = max(a, b))
result = op(result, data[i]);

}

• This is a completely memory bound application

• O(1) operation per element read and written.

• Need to optimize for memory access!

• Classical approach: represent as a binary tree

• log2(n) levels required to reduce n elements

• Example: 10 levels to find maximum of 1024 elements

• General idea on GPUs:

• Use few blocks with maximum number of threads (i.e., 512 in this example)

• Stride through memory until all items are read

• Perform shared memory reduction to find single largest

Parallel considerations

Example based on Mark Harris, Optimizing parallel reduction in CUDA

• Striding ensures perfect coalesced memory reads

• Thread 2 operates on elements 2, 10, 18, etc. for a block size of 8

• We have block size of 512: Thread 2 operates on elements 2, 514, 1026, …

• Perform "two-in-one" or "three-in-one" strides for more parallel memory requests

Striding through data

for (int i=threadIdx.x; i<size; i += blockDim.x) {
//Perform binary operator (e.g., op(a, b) = max(a, b))

result = op(result, data[i]);
}

1 5 9 1 -6 2 3 7 7 -3 0 -2 -5 4 1 9 8 -8 7 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

• By striding through data, we efficiently reduce N/num_blocks elements to 512.

• Now the problem becomes reducing 512 elements to 1:

lets continue the striding, but now in shared memory

• Start by reducing from 512 to 64 (notice use of __syncthreads()):

Shared memory reduction 1/2

__syncthreads(); // Ensure all threads have reached this point

// Reduce from 512 to 256
if(tid < 256) { sdata[tid] = sdata[tid] + sdata[tid + 256]; }
__syncthreads();

// Reduce from 256 to 128
if(tid < 128) { sdata[tid] = sdata[tid] + sdata[tid + 128]; }
__syncthreads();

// Reduce from 128 to 64
if(tid < 64) { sdata[tid] = sdata[tid] + sdata[tid + 64]; }
__syncthreads();

• When we have 64 elements, we can use 32 threads to perform the final reductions

• Remember that 32 threads is one warp, and execute instructions in SIMD fashion

• This means we do not need the syncthreads:

Shared memory reduction 2/2

if (tid < 32) {
volatile T *smem = sdata;
smem[tid] = smem[tid] + smem[tid + 32];
smem[tid] = smem[tid] + smem[tid + 16];
smem[tid] = smem[tid] + smem[tid + 8];
smem[tid] = smem[tid] + smem[tid + 4];
smem[tid] = smem[tid] + smem[tid + 2];
smem[tid] = smem[tid] + smem[tid + 1];

}

if (tid == 0) {
global_data[blockIdx.x] = sdata[0];

}

• Volatile basically tells the
optimizer "off-limits!"

• Enables us to safely skip
__syncthreads()

• Pycuda has a significant overhead for launching a kernel with many arguments

• Function calls in Python are slow, can be optimized using socalled prepared calls

#Prepare function call

module = cuda_compiler.SourceModule(cuda_kernel)

kernel = module.get_function("addKernel");

kernel.prepare("PPP")

stream = cuda_driver.Stream()
…

#Execute program on device

grid = (1, 1, 1)

block = (n, 1, 1)

kernel.prepared_async_call(grid, block, stream, c_g.gpudata, a_g.gpudata, b_g.gpudata)

#Copy data from device to host

c_g.get_async(stream=stream, ary=c)

context.synchronize()

Preparing kernel calls for async execution

• Enabling asynchronous memory transfers enables the use of concurrent streams

• The GPU can launch several kernels simultaneously and perform uploads and downloads

Asynchronous memory and kernel execution

Stream 1 Stream 2 Stream 3

Kernel Kernel

Kernel

Kernel

Kernel

Kernel

Memcpy Memcpy

Memcpy

MemcpyMemcpy

Ti
m

e

• Compilation flags are important tuning parameters

• Make sure that you always test results after changing compilation flags: things might break!

• --maxrregcount – specify maximum number of registers per block

• --use_fast_math – Use fast (but less accurate) math library

• --gpu-architecture=compute_50 --gpu-code=sm_50,sm_52 – Specify which GPUs to compile/optimize for

• Specified to pycuda.compiler

• Full overview: https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

CUDA (NVCC) Compilation flags

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

• Compilation flags in OpenCL also:

• -cl-single-precision-constant -- Treat double precision floating-point constant as single precision constant.

• -cl-denorms-are-zero – Treat very small numbers as zero

• -cl-mad-enable – Enable multiply-add instruction

• -cl-unsafe-math-optimizations – Enable unsafe/relaxed math

• -cl-finite-math-only – Assume no NaN or inf in floating point

• -cl-fast-relaxed-math – Both of the above

• Full overview: https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/clBuildProgram.html

OpenCL compile flags

https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/clBuildProgram.html

