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Abstract

We present a state-of-the-art shallow water simulator running on multiple GPUs.
Our implementation is based on an explicit high-resolution finite volume scheme
suitable for modeling dam breaks and flooding. We use row domain decomposi-
tion to enable multi-GPU computations, and perform traditional CUDA block de-
composition within each GPU for further parallelism. Our implementation shows
near perfect weak and strong scaling, and enables simulation of domains consist-
ing of up-to 235 million cells at a rate of over 1.2 gigacells per second using four
Fermi-generation GPUs. The code is thoroughly benchmarked using three differ-
ent systems, both high-performance and commodity-level systems.

1 Introduction
Predictions of floods and dam breaks require accurate simulations with rapid results.
Faster than real-time performance is of the utmost importance when simulating these
events, and traditional CPU-based solutions often fall short of this goal. We address
the performance of shallow water simulations in this paper through the use of multiple
graphics processing units (GPUs), and present a state-of-the-art implementation of a
second-order accurate explicit high-resolution finite volume scheme.

There has been a dramatic shift in commodity-level computer architecture over the
last five years. The steady increase in performance does no longer come from higher
clock frequencies, but from parallelism through more arithmetic units: The newest
CPU from Intel, for example, contains 24 single precision arithmetic units (Core i7-
980X). The GPU takes this parallelism even further with up-to 512 single precision
arithmetic units (GeForce GTX 580). While the GPU originally was designed to of-
fload a predetermined set of demanding graphics operations from the CPU, modern
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GPUs are now fully programmable. This makes them suitable for general purpose
computations, and the use of GPUs has shown large speed-ups over the CPU in many
application areas [1, 2]. The GPU is connected to the rest of the computer through the
PCI Express bus, and commodity-level computers can have up-to two GPUs connected
at full data speed. Such solutions offer the compute performance comparable to a small
CPU cluster, and this motivates the use of multiple GPUs. In fact, three of the five
fastest supercomputers use GPUs as a major source of computational power [3]. How-
ever, the extra floating-point performance comes at a price, as it is nontrivial to develop
efficient algorithms for GPUs, especially when targeting multiple GPUs. It requires
both different programming models and different optimization techniques compared to
traditional CPUs.

Related Work: The shallow water equations belong to a wider class of problems
known as hyperbolic conservation laws, and many papers have been published on GPU-
acceleration of both conservation and balance laws [4, 5, 6, 7, 8, 9, 10]. There have
been multiple publications on the shallow water equations as well [11, 12, 13, 14,
15, 16], illustrating that these problems can be efficiently mapped to modern graphics
hardware. The use of multiple GPUs has also become a subject of active research.
Micikevicius [17] describes some of the benefits of using multiple GPUs for explicit
finite-difference simulation of 3D reverse time-migration (the linear wave equation),
and reports super-linear speedup when using four GPUs. Overlapping computation and
communication for explicit stencil computations has also been presented for both single
nodes [18] and clusters [19] with near-perfect weak scaling. Perfect weak scaling was
shown by Acuña and Aoki [20] for shallow water simulations on a cluster of 32 GPU
nodes, by overlaping computations and communication. Rostrup and De Sterck [21]
further present detailed optimization and benchmarking of shallow water simulations
on clusters of multi-core CPUs, the Cell processor, and GPUs. Comparing the three,
the GPUs offer the highest performance.

In this work, we focus on single-node systems with multiple GPUs. By utilizing
more than one GPU it becomes feasible to run simulations with significantly larger do-
mains, or to increase the spatial resolution. Our target architecture is both commodity-
level computers with up-to two GPUs, as well as high-end and server solutions with
up-to four GPUs at full data speed per node. We present a multi-GPU implementa-
tion of a second-order well-balanced positivity preserving central-upwind scheme [22].
Furthermore, we offer detailed performance benchmarks on three different machine se-
tups, tests of a latency-hiding technique called ghost cell expansion, and analyzes of
benchmark results.

2 Mathematical Model and Discretization
In this section, we give a brief outline of the major parts of the implemented numerical
scheme. For a detailed overview of the scheme, we refer the reader to [22, 23]. The
shallow water equations are derived by depth-integrating the Navier-Stokes equations,
and describe fluid motion under a pressure surface where the governing flow is hor-
izontal. To correctly model phenomena such as tsunamis, dam breaks, and flooding
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over realistic terrain, we need to include source terms for bed slope and friction: h
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Here h is the water depth and u and v are velocities along the abscissa and ordinate,
respectively. Furthermore, g is the gravitational constant, B is the bottom topography,
and Cz is the Chézy friction coefficient.

To be able to simulate dam breaks and flooding, we require that our numerical
scheme handles wetting and drying of cells, a numerically challenging task. However,
we also want other properties, such as well-balancedness, accurate shock-capturing
without oscillations, at least second order accurate flux calculations, and that the com-
putations map well to the architecture of the GPU. A scheme that fits well with the
above criteria is the explicit Kurganov-Petrova scheme [22], which is based on a stan-
dard finite volume grid. In this scheme, the physical variables are given as cell aver-
ages, the bathymetry as a piecewise bilinear function (represented by the values at the
cell corners), and fluxes are computed across cell interfaces (see also Figure 1). Using
vectorized notation, in which Q = [h, hu, hv]T is the vector of conserved variables,
the spatial discretization can be written,

dQij

dt
= Hf (Qij) +HB(Qij ,∇B)−

[
F (Qi+1/2,j)− F (Qi−1/2,j)

]
−
[
G(Qi,j+1/2)−G(Qi,j−1/2)

]
= Hf (Qij) +R(Q)ij .

(2)

Here Hf (Qij) is the friction source term, HB(Qij ,∇B) is the bed slope source term,
and F and G are the fluxes across interfaces along the abscissa and ordinate, respec-
tively. We first calculate R(Q)ij in (2) explicitly, and as in [23], we use a semi-implicit
discretization of the friction source term,
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This yields one ordinary differential equation in time per cell, which is then solved us-
ing a standard second-order accurate total variation diminishing Runge-Kutta scheme [24],

Q∗
ij =
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Qn

ij + ∆tR(Qn)ij
]
/
[
1 + ∆tH̃f (Qn
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(4)

or a first-order accurate Euler scheme, which simply amounts to setting Qn+1 = Q∗.
The timestep, ∆t, is limited by a CFL condition,

∆t ≤ 1
4 minΩ

{∣∣∆x/λx∣∣, ∣∣∆y/λy∣∣}, λx = u±
√
gh,

λy = v ±
√
gh

(5)
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Figure 1: Domain decomposition and variable locations for the single-GPU simulator.
The global domain is padded E© to fit an integer number of CUDA blocks, and global
ghost cells D© are used for boundary conditions. Each block G© has local ghost cells F©
that overlap with other blocks to satisfy the data dependencies dictated by the stencil

C©. Our data variables Q,R,HB , and Hf are given at grid cell centers A©, and B is
given at grid cell corners B©.

that ensures that the fastest numerical propagation speed is at most one quarter grid cell
per timestep.

In summary, the scheme consists of three parts: First fluxes and explicit source
terms are calculated in (2), before we calculate the maximum timestep according to
the CFL condition, and finally evolve the solution in time using (4). The second-order
accurate Runge-Kutta scheme for the time integration is a two-step process, where
we first perform the above operations to compute Q∗, and then repeat the process to
compute Qn+1.

3 Implementation
Solving partial differential equations using explicit schemes implies the use of stencil
computations. Stencil computations are embarrassingly parallel and therefore ideal for
the parallel execution model of GPUs. Herein, the core idea is to use more than one
GPU to allow faster simulation, or simulations with larger domains or higher resolu-
tion. Our simulator runs on a single node, enabling the use of multithreading, and we
use one global control thread in addition to one worker thread per GPU. The control
thread manages the worker threads and facilitates domain decomposition, synchroniza-
tion, and communication. Each worker thread uses a modified version of our previously
presented single-GPU simulator [23] to compute on its part of the domain.

Single-GPU Simulator: The single-GPU simulator implements the Kurganov-Petrova
scheme on a single GPU using CUDA [25], and the following gives a brief overview
of its implementation. The simulator first allocates and initializes data according to the
initial conditions of the problem. After initialization, we repeatedly call a step func-
tion to advance the solution in time. The step function executes four CUDA kernels
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Figure 2: Row decomposition and exchange of two rows of ghost cells. The shaded
cells are a part of the overlapping ghost cell region between subdomains.

in order, that together implement the numerical scheme. The first kernel computes
the fluxes across all interfaces, and is essentially a complex stencil computation. This
kernel reads four values from global memory, performs hundreds of floating point op-
erations, and writes out three values to global memory again. It is also the most time
consuming kernel, with over 87% of the runtime. The next kernel finds the maximum
wave speed in the domain, and then computes the timestep size according to the CFL
condition. The third kernel simply solves the ordinary differential equations in time to
evolve the solution. Finally, the fourth kernel applies boundary conditions by setting
the values of global ghost cells (see Figure 1).

Threaded Multi-GPU Framework: When initializing our simulator, the control
thread starts by partitioning the global domain, and continues by initializing one worker
thread per subdomain, which attaches to a separate GPU. We can then perform simu-
lation steps, where the control thread manages synchronization and communication
between GPUs. An important thing to note about this strategy is that the control thread
handles all multi-GPU aspects, and that each GPU is oblivious to other GPUs, running
the simulation on its subdomain similar to a single-GPU simulation.

We use a row domain decomposition, in which each subdomain consists of sev-
eral rows of cells (see Figure 2). The subdomains form overlapping regions, called
ghost cells, which function as boundary conditions that connect the neighbouring sub-
domains. By exchanging the overlapping cells before every timestep, we ensure that
the solution can propagate properly between subdomains. There are several benefits to
the row decomposition strategy. First of all, it enables the transfer of continuous parts
of memory between GPUs, thus maximizing bandwidth utilization. A second benefit is
that we can minimize the number of data transfers, as each subdomain has at most two
neighbours. To correctly exchange ghost cells, the control thread starts by instructing
each GPU to download its ghost cells to pinned CPU memory, as direct GPU to GPU-
transfers are currently not possible. The size of the ghost cell overlap is dictated by the
stencil, which in our case uses two values in each direction (see Figure 1). This means
that we need to have an overlap of four rows of cells, two from each of the subdomains.
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After having downloaded the ghost cells to the CPU, we need to synchronize to guar-
antee that all downloads have completed, before each GPU can continue by uploading
the ghost cells coming from neighbouring subdomains. Note that for the second-order
accurate Runge-Kutta time integration scheme, we have to perform the ghost cell ex-
change both when computing Q∗ and when computing Qn+1, thus two times per full
timestep.

The multi-GPU simulator is based on our existing single-GPU simulator, which
made certain assumptions that made it unsafe to execute from separate threads. This
required us to redesign parts of the code to guarantee thread safety. A further difficulty
related to multi-GPU simulation is that the computed timestep, ∆t, will typically differ
between subdomains. There are two main strategies to handle this problem, and we
have investigated both. The simplest is to use a globally fixed timestep throughout
the simulation. This, however, requires that the timestep is less than or equal to the
smallest timestep allowed by the CFL condition for the full simulation period, which
again implies that our simulation will not propagate as fast as it could have. The second
strategy is to synchronize the timestep between subdomains for each timestep, and
choose the smallest. This strategy requires that we split the step function into two parts,
where the first computes fluxes and the maximum timestep, and the second performs
time integration and applies boundary conditions. Inbetween these two substeps we
can find the smallest global timestep, and redistribute it to all GPUs. This strategy
ensures that the simulation propagates at the fastest possible rate, but at the expense of
potentially expensive synchronization and more complex code.

Ghost Cell Expansion: Synchronization and overheads related to data transfer can
often be a bottleneck when dealing with distributed memory systems, and a lot of re-
search has been invested in, e.g., latency hiding techniques. In our work, we have
implemented a technique called ghost cell expansion (GCE), which has yielded a sig-
nificant performance increase for cluster simulations [26, 27]. The main idea of GCE
is to trade more computation for smaller overheads by increasing the level of overlap
between subdomains, so that they may run more than one timestep per ghost cell ex-
change. For example, by extending the region of overlap from four to eight cells, we
can run two timesteps before having to exchange data. When exchanging ghost cells
for every timestep, we can write the time it takes to perform one timestep as

w1 = T (m) + cT + C(m,n) + c,

in which m and n are the domain dimensions, T (m) is the ghost cell transfer time, cT
represents transfer overheads, C(m,n) is the time it takes to compute on the subdo-
main, and c represents other overheads. Using GCE to exchange ghost cells only every
kth timestep, the average time per timestep becomes

wk = T (m) + cT /k + C(m,n+O(k)) + c,

in which we divide the transfer overheads by k, but increase the overlap, and thus the
size of each subdomain. This means that each worker thread computes on a slightly
larger domain, and we have larger but fewer data transfers.
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Figure 3: Hardware setup of the Tesla S1070 GPU Computing Server with four Tesla
C1060 GPUs (right) connected to an IBM X3550 M2 server (left).

4 Results and Analysis
To validate our implementation, we have compared the multi-GPU results with the
original single-GPU simulator [23], which has been both verified against analytical
solutions and validated against experiments. Our multi-GPU results are identical to
those produced by the single-GPU implementation, which means that the multi-GPU
implementation is also capable of reproducing both analytical and real-world cases.

We have used three different systems for benchmarking our implementation. The
first system is a Tesla S1070 GPU Computing Server consisting of four Tesla C1060
GPUs with 4 GiB memory each1, connected to an IBM X3550 M2 server with two
2.0 GHz Intel Xeon X5550 CPUs and 32 GiB main memory (see Figure 3). The second
system is a SuperMicro SuperServer consisting of four Tesla C2050 GPUs with 3 GiB
memory each (2.6 available when ECC is enabled)2, and two 2.53 GHz Intel Xeon
E5630 CPUs with 32 GiB main memory. The third system is a standard desktop PC
consisting of two GeForce 480 GTX cards with 1.5 GiB memory each and a 2.67 GHz
Intel Core i7 CPU with 6 GiB main memory. The first two machine setups represent
previous and current generation server GPU nodes, and the third machine represents a
commodity-level desktop PC.

As our performance benchmark, we have used a synthetic circular dam break over
a flat bathymetry, consisting of a square 4000-by-4000 meters domain with a water
column placed in the center. The water column is 250 meters high with a radius of
250 meters, and the water elevation in the rest of the domain is 50 meters. At time
t = 0, the dam surrounding the water column is instantaneously removed, creating an
outgoing circular wave. We have used the first-order accurate Euler time integrator in

1Connected through two PCIe ×16 slots.
2Connected through four PCIe ×16 slots.
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Figure 4: Testing the impact of different numbers of ghost cell expansion rows with
four GPUs. Tested on both The Tesla S1070 system (see Figure 3) (left), and the Tesla
C2050-based system (right). The domains tested consists of 10242 (dashed), 40962

(densely dashed) or 81922 (solid) cells. The graphs have been normalized relative to
the peak achieved performance for each domain size.

all benchmarks, and the friction coefficient Cz is set to zero. The bed slope and friction
coefficient do not affect the performance in this benchmark.

Ghost Cell Expansion We have implemented ghost cell expansion so that we can
vary the level of overlap, and benchmarked three different domain sizes to determine
the effect. Figure 4 shows that there is a very small overhead related to transferring
data for sufficiently large domain sizes, and performing only one timestep before ex-
changing overlapping ghost cells actually yields the best overall results for the Tesla
S1070 system. Expanding with more than eight cells, the performance of the simulator
starts decreasing noticeably. From this, we reason that the overhead connected with
data transfers between subdomains in these tests is negligible, compared to the transfer
and computational time. Increasing the level of GCE only had a positive impact on the
smallest domain for the Tesla S1070 system, where the transferred data volume is so
small that the overheads become noticeable. On the Tesla C2050-based system, how-
ever, we see that the positive impact of GCE is more visible. We expect this is because
this GPU is much faster, making the communication overheads relatively larger.

Our results show that ghost cell expansion had only a small impact on the shared-
memory architectures we are targeting for reasonably sized grids, but gave a slight
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performance increase for the Tesla C2050 GPUs. This is due to the negligible transfer
overheads. We thus expect GCE to have a greater effect when performing ghost cell
exchange across multiple nodes, since the overheads here will be significantly larger,
and we consider this a future research direction.

Since our results show that it is most efficient to have a small level of GCE for the
Tesla S1070 system, we choose to exchange ghost cells after every timestep in all of
our other benchmarks for this system. For the Tesla C2050-based system we exchange
data after eight timesteps, as this gave the overall best results. Last, for the GeForce
480 GTX cards, which displayed equivalent behaviour to that of the Tesla C2050-based
system, we also exchange ghost cells after performing eight timesteps.

Timestep Synchronization: We have implemented both the use of a global fixed
timestep, as well as exchange of the minimum global timestep in our code, and bench-
marked on our three test systems to determine the penalty of synchronization. In the
tests we compared simulation runs with a fixed ∆t = 0.001 in each subdomain, and
runs with global synchronization of ∆t. When looking at the results we see that the
cost of synchronizing ∆t globally has a negligible impact on the performance of the
Tesla S1070 system, with an average 0.36% difference for domain sizes larger than
five million cells on four GPUs. As expected, the cost is also roughly halved when
synchronizing two GPUs compared to four (0.17%). For smaller domain sizes, how-
ever, the impact becomes noticeable, but these domains are typically not candidates for
multi-GPU simulations. The Tesla C2050- and GeForce 480 GTX-based systems also
display similar results, meaning that global synchronization of ∆t is a viable strategy
for reasonably sized domains.

Weak and Strong Scaling: Weak and strong scaling are two important performance
metrics that are used for parallel execution. While varying the number of GPUs, weak
scaling keeps the domain size per GPU fixed, and strong scaling keeps the global do-
main size fixed. As we see from Figure 5, we have close to linear scaling from one to
four GPUs. For domains larger than 25 million cells the simulator displays near perfect
weak and strong scaling on all three systems. Running simulations on small domains
is less efficient when using multiple GPUs for two reasons: First of all, as the global
domain is partitioned between more GPUs, we get a smaller size of each subdomain.
When these subdomains become sufficiently small, we are unable to fully occupy a sin-
gle GPU, and thus do not reach peak performance. Second, we also experience larger
effects of overheads. However, we quickly get close-to linear scaling as the domain
size increases.

The Tesla C1060 GPUs have 4.0 GiB of memory each, which enables very large
scale simulations: When using all four GPUs, domains can have up to 379 million cells,
computing at 396 megacells per second. Because the most recent Tesla C2050 GPUs
from NVIDIA have only 3.0 GiB memory per GPU, our maximum domain size is
smaller (235 million cells), but our simulation speed is dramatically faster. Using four
GPUs, we achieve over 1.2 gigacells per second. The fastest system per GPU, however,
was the commodity-level desktop machine with two GeForce 480 GTX cards. These
cards have the highest clock frequency, and we achieve over 400 megacells per second
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Figure 5: (Left) Performance experiment on a Tesla S1070 system (see Figure 3) with
up-to four GPUs. (Right) Performance experiment on a Tesla C2050-based system,
using up-to four GPUs. The secondary y-axis on the right-hand side shows scaling
relative to the peak achieved performance of a single GPU.

per GPU.

5 Summary and Future Work
We have presented an efficient multi-GPU implementation of a modern finite volume
scheme for the shallow water equations. We have further presented detailed bench-
marking of our implementation on three hardware setups, displaying near-perfect weak
and strong scaling on all three. Our benchmarks also show that communication be-
tween GPUs within a single node is very efficient, which enables tight cooperation
between subdomains.

A possible further research direction is to explore different strategies for domain
decomposition, and especially to consider techniques for adaptive domain decomposi-
tions.
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